Factors affecting projected Arctic surface shortwave heating and albedo change in coupled climate models.
نویسندگان
چکیده
We use a large ensemble of simulations from the Community Earth System Model to quantify simulated changes in the twentieth and twenty-first century Arctic surface shortwave heating associated with changing incoming solar radiation and changing ice conditions. For increases in shortwave absorption associated with albedo reductions, the relative influence of changing sea ice surface properties and changing sea ice areal coverage is assessed. Changes in the surface sea ice properties are associated with an earlier melt season onset, a longer snow-free season and enhanced surface ponding. Because many of these changes occur during peak solar insolation, they have a considerable influence on Arctic surface shortwave heating that is comparable to the influence of ice area loss in the early twenty-first century. As ice area loss continues through the twenty-first century, it overwhelms the influence of changes in the sea ice surface state, and is responsible for a majority of the net shortwave increases by the mid-twenty-first century. A comparison with the Arctic surface albedo and shortwave heating in CMIP5 models indicates a large spread in projected twenty-first century change. This is in part related to different ice loss rates among the models and different representations of the late twentieth century ice albedo and associated sea ice surface state.
منابع مشابه
Amplified Arctic climate change: What does surface albedo feedback have to do with it?
[1] A group of twelve IPCC fourth assessment report (AR4) climate models have Arctic (60N–90N) warmings that are, on average, 1.9 times greater than their global warmings at the time of CO2 doubling in 1%/year CO2 increase experiments. Forcings and feedbacks that impact the warming response are estimated for both Arctic and global regions based on standard model diagnostics. Fitting a zero-dime...
متن کاملAmplified Arctic warming by phytoplankton under greenhouse warming.
Phytoplankton have attracted increasing attention in climate science due to their impacts on climate systems. A new generation of climate models can now provide estimates of future climate change, considering the biological feedbacks through the development of the coupled physical-ecosystem model. Here we present the geophysical impact of phytoplankton, which is often overlooked in future clima...
متن کاملProjected changes in atmospheric heating due to changes in fire disturbance and the snow season in the western Arctic, 2003–2100
[1] In high latitudes, changes in climate impact fire regimes and snow cover duration, altering the surface albedo and the heating of the regional atmosphere. In the western Arctic, under four scenarios of future climate change and future fire regimes (2003–2100), we examined changes in surface albedo and the related changes in regional atmospheric heating due to: (1) vegetation changes followi...
متن کاملObserved changes in the albedo of the Arctic sea ice zone between 1982-2009
The surface albedo of the Arctic sea ice zone is a crucial component in the energy budget of the Arctic region [1, 2]. The treatment of sea ice albedo has been identified as a main source of variability in the future sea ice mass loss forecasts in coupled climate models [3]. There is a clear need to establish datasets of Arctic sea ice albedo to study the changes based on observational data, an...
متن کاملImpacts of Satellite-Based Snow Albedo Assimilation on Offline and Coupled Land Surface Model Simulations
Seasonal snow cover in the Northern Hemisphere is the largest component of the terrestrial cryosphere and plays a major role in the climate system through strong positive feedbacks related to albedo. The snow-albedo feedback is invoked as an important cause for the polar amplification of ongoing and projected climate change, and its parameterization across models is an important source of uncer...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Philosophical transactions. Series A, Mathematical, physical, and engineering sciences
دوره 373 2045 شماره
صفحات -
تاریخ انتشار 2015